Application of large deviation methods to the pricing of index options in finance Méthodes de grandes déviations et pricing d’options sur indice
نویسندگان
چکیده
We develop an asymptotic formula for calculating the implied volatility of European index options based on the volatility skews of the options on the underlying stocks and on a given correlation matrix for the basket. The derivation uses the steepestdescent approximation for evaluating the multivariate probability distribution function for stock prices, which is based on large-deviation estimates of diffusion processes densities by Varadhan (Comm. Pure Appl. Math. 20 (1967)). A detailed version of these results can be found in (RISK 15 (10) (2002)). To cite this article: M. Avellaneda et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003). 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved. Résumé Nous montrons une formule asymptotique donnant la volatilité implicite d’une option sur indice à partir des volatilités des actifs sous-jacents. La démonstration repose sur les estimations de densités de diffusion en temps petit du type grandes déviation de Varadhan (Comm. Pure Appl. Math. 20 (1967)). On pourra trouver une version détaillée de ces résultats dans l’article (RISK 15 (10) (2002)). Pour citer cet article : M. Avellaneda et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003). 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
منابع مشابه
Efficient pricing options under regime switching
In the paper, we propose two new efficient methods for pricing barrier option in wide classes of Lévy processes with/without regime switching. Both methods are based on the numerical Laplace transform inversion formulae and the Fast Wiener-Hopf factorization method developed in Kudryavtsev and Levendorskǐi (Finance Stoch. 13: 531–562, 2009). The first method uses the Gaver-Stehfest algorithm, t...
متن کاملParallel Pricing Algorithms for Multi--Dimensional Bermudan/American Options using Monte Carlo methods
In this paper we present two parallel Monte Carlo based algorithms for pricing multi–dimensional Bermudan/American options. First approach relies on computation of the optimal exercise boundary while the second relies on classification of continuation and exercise values. We also evaluate the performance of both the algorithms in a desktop grid environment. We show the effectiveness of the prop...
متن کاملBarrier options pricing of fractional version of the Black-Scholes model
In this paper two different methods are presented to approximate the solution of the fractional Black-Scholes equation for valuation of barrier option. Also, the two schemes need less computational work in comparison with the traditional methods. In this work, we propose a new generalization of the two-dimensional differential transform method and decomposition method that will extend the appli...
متن کاملApplication of Monte Carlo Simulation in the Assessment of European Call Options
In this paper, the pricing of a European call option on the underlying asset is performed by using a Monte Carlo method, one of the powerful simulation methods, where the price development of the asset is simulated and value of the claim is computed in terms of an expected value. The proposed approach, applied in Monte Carlo simulation, is based on the Black-Scholes equation which generally def...
متن کاملFast and accurate pricing of barrier options under Lévy processes
We suggest two new fast and accurate methods, Fast Wiener-Hopf method (FWH-method) and Iterative Wiener-Hopf method (IWH-method), for pricing barrier options for a wide class of Lévy processes. Both methods use the Wiener-Hopf factorization and Fast Fourier Transform algorithm. Using an accurate albeit relatively slow finite-difference algorithm developed in Levendorskǐi et al (2006) (FDS-metho...
متن کامل